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ABSTRACT
Dual frame surveys, in which independent samples are selected from
two frames to decrease survey costs or to improve coverage, can
present challenges for regression estimation because of complex
designs and unknown degree of overlap. In this research, we devel-
oped three nonparametric regression estimators in dual frame sur-
veys and investigated their asymptotic properties. Simulation results
show that all the proposed methods work well.
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1. Introduction

Traditionally, large surveys use a single sampling frame from which the sample is
selected. As the population and methods used to collect survey data change, single
frame surveys may miss parts of the population. For example, random digit dialing is a
popular sampling method. However, as mentioned in Keeter, Dimock, and Christian
(2010), “The number of Americans who rely solely or mostly on a cell phone has been
growing for several years, posing an increasing likelihood that public opinion polls con-
ducted only by landline telephone will be biased”. In order to obtain better coverage of
the population of interest and cost less, a number of surveys employ dual frame design,
in which independent samples are taken from two overlapping sampling frames. In a
general case, each frame can contain units the other frame does not have as well as
units in common as depicted in Figure 1. For example, frame A can be a landline frame
and frame B can be a cell phone frame. The overlap domain ab includes elements with
both landline and cellphone. A dual frame survey presents additional challenges to those
from a single frame survey because there are now two samples, each with a possibly
complex sampling design and may have an unknown degree of overlap.
Researchers have proposed methods for combining information from the two inde-

pendent samples in a dual frame survey to estimate population quantities such as total,
mean and gross flows. These include but not limited to Hartley (1962, 1974), Bankier
(1986), Fuller and Burmeister (1972), Skinner (1991), Skinner and Rao (1996) and Lu
and Lohr (2010) etc. Lohr and Rao (2000) summarized estimators used for estimating
population total in cross-sectional dual frame surveys.
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For applications in economic and health surveys, the main interest is usually in ana-
lysis and comparison rather than in the estimation of population mean or totals.
Relationships among the variables, prediction of new observations, or imputation of
missing values are often of interest. Merkouris (2004) considered combing independent
regression estimators from multiple surveys. Metcalf and Scott (2009) introduced a sim-
ple class of procedures for analyzing dual frame surveys, which can be extended to
regression analysis. Lu (2014) proposed several approaches to estimate the linear regres-
sion coefficients in dual frame surveys. In practice, however, the underlying model may
not be linear. To solve this problem, we propose nonparametric regression estimators in
dual frame surveys.
Classical nonparametric regression estimators and methods have been extended and

investigated in survey area, which includes Korn and Graubard (1998), Bellhouse and
Stafford (1999, 2001), Breidt and Opsomer (2000), Buskirk (1998), Buskirk and Lohr
(2005), Opsomer and Miller (2005), Breidt, Claeskens, and Opsomer (2005), Goga
(2005), Zhang, Christensen, and Zheng (2015) etc. Harms and Duchesne (2010) intro-
duced a completely data driven optimal bandwidth for local linear estimator in complex
surveys, and derived the asymptotic mean squared error of the kernel estimators. In this
research, we apply local linear estimator to dual frame surveys using optimal bandwidth
suggested by Harms and Duchesne (2010).
This article is organized as follows. In Sec. 2, we review the frame work and pseudo

maximum likelihood (PML) estimators in a dual frame survey, and the bandwidth selec-
tion method for local linear estimator in complex surveys (Harms and Duchesne 2010).
In Sec. 3, we propose local linear estimators in dual frame surveys and examine their
asymptotic properties. In Sec. 4, we present simulation studies. Finally, we summarize
our research in Sec. 5.

2. Background

In this section, we review the frame work and pseudo maximum likelihood (PML) esti-
mators for population totals in a dual frame survey. We also review the completely data
driven bandwidth selection method for local linear estimator in a single frame complex
surveys suggested by Harms and Duchesne (2010).

2.1. Frame work and PML in a dual frame survey

As depicted in Figure 1, in a dual frame survey, frame A and frame B together cover
the population of interest. Domain a includes the elements contained only in frame A.

Figure 1. Frames A and B are both incomplete and overlapping.
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Domain b includes the elements contained only in frame B. The overlap domain ab
includes the elements contained in both frame A and frame B. The population sizes for
the frames and domains are denoted by NA;NB;Na;Nb; and Nab, where NA ¼ Na þ Nab,
and NB ¼ Nb þ Nab. Two independent samples SA and SB are taken from frame A and
frame B respectively according to specified probability sampling designs. The probability
of unit i being included in SA is piA ¼ pfi 2 SAg. The probability of unit i being
included in SB is piB ¼ pfi 2 SBg. The sample sizes for the frames and domains are nA,
nB, na, nb, nAab and nBab with nA ¼ na þ nAab; nB ¼ nb þ nBab and n ¼ nA þ nB, where n is
the sample size from the union of frame A and frame B, nAab and nBab represent the sam-
ple sizes for the elements of domain ab that were originally taken from frames A and B
respectively.
Skinner and Rao (1996) modified the maximum likelihood estimator from a simple

random sample to obtain a Pseudo Maximum Likelihood (PML) estimator for complex
designs and suggested the following estimator for population total:

Ŷ PML ¼ NA�N̂ ab;PML

N̂a
Ŷ a þ N̂ ab;PML

N̂ab
Ŷ ab þ NB�N̂ ab;PML

N̂b
Ŷ b; (1)

where N̂ a; Ŷ a; N̂ b and Ŷ b are standard basic estimators, Ŷ ab ¼ hŶ
A
ab þ ð1�hÞŶ B

ab; with
Ŷ

A
ab and Ŷ

B
ab the estimators of Yab by using elements of domain ab that were originally

taken from frames A and frame B respectively. N̂ ab ¼ hN̂
A
ab þ ð1�hÞN̂B

ab, where N̂
A
ab

and N̂
B
ab are the estiamtors of Nab by using elements of domain ab that were originally

taken from frames A and frame B respectively. The estimator N̂ ab;PML is a function of
N̂

A
ab; N̂

B
ab and h, and is the smaller root of the quadratic equation

h
NB

þ 1�hð Þ
NA

� �
x2� 1þ h

N̂
A
ab

NB
þ 1� hð Þ N̂

B
ab

NA

" #
xþ hN̂

A
ab þ 1� hð ÞN̂B

ab

h i
¼ 0; (2)

where

hP ¼
N̂ aNBv N̂

B
ab

� �
N̂ aNBv N̂

B
ab

� �
þ N̂ bNAv N̂

A
ab

� � (3)

is chosen to minimize the asymptotic variance of N̂ ab;PMLðhÞ.

2.2. Local linear estimator using completely data driven bandwidth selection
methods in complex surveys

Consider the general nonparametric regression model

yi ¼ l tið Þ þ ei; i ¼ 1; 2; :::; n; (4)

where feigni¼1 is a sequence of independent, identically distributed random variables
with EðeiÞ ¼ 0 and Eðe2i Þ ¼ r2; lð�Þ is an unknown smooth regression curve to be esti-
mated. Without loss of generality, we take ti 2 ½0; 1�; i ¼ 1; 2; :::; n and for simplicity we
assume that 0< t1 < � � � < tn < 1:
Let U be the union of frame A and frame B, S be a survey sample, N be the popula-

tion size, nS be the sample size (Note that nS is random with EðnSÞ ¼ n), and let pk be
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the first order inclusion probability with pk ¼ pðunit k 2 SÞ. Sample weight dk is the
reciprocal of inclusion probability pk, i.e. dk ¼ 1=pk for k 2 S. Let N̂ be the estimate of
population size N i.e. N̂ ¼ PnS

k¼1 dk and let r be the sampling rate defined as r ¼ nS=N.
If every unit in the finite population was available, a Nadaraya–Watson regression
smoother assuming that ek; k ¼ 1; 2 � � �N are iid would be

l̂ t;hð Þ ¼
N�1 P

U Kh t�tkð Þyk
N�1

P
U Kh t � tkð Þ ; (5)

where h is bandwidth, Khð�Þ is the kernel function, and Khðt�tkÞ ¼ h�1Kfðt � tkÞ=hg:
The local linear kernel estimator incorporating sample weights has the following form

l̂ t; hð Þ ¼
P

S ŝ2 t; hð Þ�ŝ1 t; hð Þ tk�tð Þ� �
dkKh tk�tð Þyk

ŝ2 t; hð Þ̂s0 t; hð Þ � ŝ21 t; hð Þ ; (6)

where ŝiðt; hÞ ¼
P

S dkðtk�tÞiKhðtk�tÞ; i ¼ 0; 1; and 2.
Let ~lðt; hÞ be the classical local linear estimator without considering sample weights,

Harms and Duchesne (2010) showed that

Bias l̂ t; hð Þð Þ ¼ Bias ~l t; hð Þð Þ þ o h2ð Þ; (7)

and

Var l̂ t; hð Þð Þ ¼ �þ rð ÞVar ~l t; hð Þð Þ þ o Nhð Þ�1
� 	

; � ¼ nS=N
2
X
U

dk � 1ð Þ: (8)

By minimizing the asymptotic MSE, Harms and Duchesne (2010) derived the optimal
bandwidth for l̂ as follows

ĥ
opt

tð Þ ¼ �þ rð Þ1=5~hopt; (9)

where ~h
opt

is the optimal bandwidth for ~lðt; hÞ; ð�þ rÞ1=5 is the correction factor,
which is a function related to the sampling plan (refer to Harms and Duchesne (2010)
for more details).

3. Local linear estimators in a dual frame survey

In Sec. 2, we have reviewed PML population total estimator in a dual frame survey, and
local linear estimator in a single frame survey. In this section, we study local linear esti-
mators in a dual frame survey by using the idea of PML estimator. We propose three
methods for nonparametric local linear regression estimators in dual frame surveys and
investigate their asymptotic properties. Our main idea is to convert the two independent
samples to a pseudo single sample by using adjusted weight d�i and perform regular
local linear regression estimation. A challenge here is to find estimates of h for the over-
lap domain and the optimal bandwidth h for nonparametric regression. Method 1 sim-
ply uses the optimal hP in Eq. (3) and the paired optimal bandwidth ĥ derived by Eq.
(9). Method 2 uses cross-validation (CV) to select h, with the paired optimal bandwidth
ĥ derived by Eq. (9). Method 3, on the other hand, uses CV to select optimal band-
width ĥ when fixing h. All the methods are trying to look for optimal estimates of the
parameter pair ðh; hÞ.
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3.1. Methods/estimators

Let D� be the diagonal matrix of the modified sample weights d�i , with

d�i ¼
di; if i 2 a;
hdi; if i 2 ab and i 2 SA;
1�hð Þdi; if i 2 ab and i 2 SB;
di; if i 2 b:

8>><
>>: (10)

Method 1 uses the optimal variable hP in Eq. (3) to reweight the observations in the
overlap domain to construct a pseudo single sample. Optimal bandwidth ĥ is derived
by Eq. (9). l̂ðt; hÞ in Eq. (6) is derived using modified weight d�i in Eq. (10) and the
optimal bandwidth ĥ.
In Method 2, we use cross-validation (CV) to derive a fully data-driven h selection

procedure. The weighted prediction sum of squares is as follows

CV hð Þ ¼
X

i2SA[SB

d�i yi�ŷ ið Þ
� 	2

¼
Xna
i¼1

di yi�ŷ ið Þ
� 	2 þXnAab

i¼1

hdi yi�ŷ ið Þ
� 	2

þ
XnBab
j¼1

1� hð Þdj yj�ŷ jð Þ
� �2 þ

Xnb
j¼1

dj yj�ŷ jð Þ
� �2

;

where ŷðiÞ is the estimate computed without using the ith observation. The ith observa-
tion is treated as an additional observation for prediction and CVðhÞ measures the qual-
ity of predictions. In practice, we set up a grid between (0, 1) for possible h value. For
each h value, we use Eq. (9) to find corresponding optimal ĥ. We then minimize the
CV quantity to find optimal ĥ.
In Method 3, given the optimal ĥ from Method 2, we use the following CV criterion

to minimize the prediction error to select optimal bandwidth.

CV hð Þ ¼
X

i2SA[SB

d�i yi�ŷ ið Þh
� 	2

¼
Xna
i¼1

di yi�ŷ ið Þh
� 	2 þXnAab

i¼1

ĥdi yi�ŷ ið Þh
� 	2

þ
XnBab
j¼1

1� ĥð Þdj yj�ŷ jð Þh
� �2 þ

Xnb
j¼1

dj yj�ŷ jð Þh
� �2

;

where ĥ is the optimal estimate of h from Method 2, ŷðiÞh is the estimate computed
without using the ith observation given a fixed h.
In practice, we first use Eq. (9) to find optimal bandwidth ĥopt;method2 based on ĥ

selected from Method 2. Next we set up a grid around ĥopt;method2 to find the optimal ĥ
that minimize the CV quantity.
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3.2. Asymptotic properties of the estimators

From all the three methods, the local linear estimators are in the following matrix form

l̂ ¼ eT1 Z tð ÞTD�
SWSZ tð Þ

� ��1
Z tð ÞTD�

SWSy
� �

; (11)

where e1 is a vector with 1st element 1 and zero else, D�
S is a diagonal matrix whose ele-

ments are the sampling weights, WS is an n� n diagonal matrix whose elements are
equal to Khðt�tkÞk2S, and ZðtÞ is an n� 2 matrix whose kth row is of the
form ZðtÞk ¼ ð1; ðtk�tÞÞk2S:
We now examine the asymptotic properties of the estimators in Eq. (11). For this,

we’v e made three assumptions for the population, sampling plan and bandwidth.

Assumption 1: For frame A, suppose that a finite population U1A with size N1A is a
subset of a larger superpopulation U2A with size N2A, the superpopulation U2A is a sub-
set of a larger superpopulation U3A with size N3A, and so on, i.e.,
N1A <N2A < � � � <NiA < � � �. NiA goes to infinity as i ! 1. Given a population UiA, a
sample of size niA is drawn according to a sampling plan. For frame B, suppose that a
finite population U1B with size N1B is a subset of a larger superpopulation U2B with size
N2B, the superpopulation U2B is a subset of a larger superpopulation U3B with size N3B,
and so on, i.e., N1B <N2B < � � � <NiB < � � �. NiB goes to infinity as i ! 1. Given a
population UiB, a sample of size niB is drawn according to a sampling plan.

Assumption 2: For both frames, the sampling rate niA=NiA and niB=NiB converges with
probability one (wp1) to a finite constant r> 0, as i ! 1. The first order inclusion
probabilities for sample from frame A are such that for any NiA, mink2UiApkA � kA> 0
wp1. The first order inclusion probabilities for sample from frame B are such that for
any NiB, mink2UiBpkB � kB > 0 wp1. The second order inclusion probabilities for sample
from frame A satisfy mink;l2UiApklA � k�A > 0 and

lim supi!1niAmaxk;l2UiA:k 6¼ljpklA�pkAplAj<1;wp1:

The second order inclusion probabilities for sample from frame B satisfy
mink;l2UiBpklB � k�B > 0 and

lim supi!1niBmaxk;l2UiB:k 6¼ljpklB�pkBplBj<1;wp1:

In addition, assume that the number of psus ~niA and ~niB in the two samples both
increase such that ~niA=~niB ! c for some 0< c< 1.

Assumption 3: Bandwidth hi ¼ hiðNi; niÞ, is such that hi ! 0 and Nihi ! 1, as
i ! 1, where Ni ¼ NiA þ NiB�NiAB and ni ¼ niA þ niB.
Based on the assumptions, follow from Theorem 1 in Harms and Duchesne (2010),

we have the following properties of the estimators.

Asymptotic Properties: the asymptotic bias and variance of the local linear estimators
in Eq. (11) are as follows

Bias l̂ t; hð Þð Þ ¼ 1
2
h2l00 tð Þl2 Kð Þ þ o h2ð Þ; (12)
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Var l̂ t; hð Þð Þ ¼ 1
nh

�þ rð ÞR kð Þr2
ft tð Þ þ o Nhð Þ�1

� 	
; (13)

where � ¼ n=N2 P
Uðd�k � 1Þ;RðkÞ ¼ Ð

K2ðzÞdz; l2ðKÞ ¼
Ð1
�1 z2KðzÞdz; and ftðtÞ is the

density function of t.

Note that Eq. (12) shows that the first term of bias is related to bandwidth h. The
effect of sampling weight is of oðh2Þ order, and is negligible. While, Eq. (13) shows that
sampling weights are closely related to variance of l̂ðt; hÞ. We can see that the larger
the bandwidth h, the larger the bias and the smaller the variance. Therefore, the optimal
bandwidth ĥ is selected to balance the bias and variance.

4. Simulation studies

In this section, we perform a simulation study to investigate finite sample properties of
the nonparametric regression estimators in dual frame surveys. We will compare among
linear regression (Lu 2014) estimator and the three proposed nonparametric local linear
estimators. Method 1 in Lu (2014) was used in our simulation study, which uses hP in
Eq. (3) to reweight the samples for a pseudo single sample and perform linear regres-
sion estimation.
Simulation setup follows Harms and Duchesne (2010) and Zhang, Christensen, and

Zheng (2015). At the super model stage, the following equation is used to generate the
population

yi ¼ lk tið Þ þ �i i ¼ 1; :::; 1000 and k ¼ 1; 2; 3; 4; (14)

where each population has N¼ 1000 values of ti which are equally spaced in the interval
½0; 1� and random errors are normally distributed with mean 0 and constant variance
r2. First, we generate population of A [ B by setting t 2 ½0; 1�. Frame A is defined by
setting t 2 ½0; 0:7� and frame B is defined by setting t 2 ½0:3; 1�. Note, when
t 2 ½0:3; 0:7�, frame A and frame B overlapped.
Four functions are used to generate populations at the super model stage:
H€ardle : l1ðtÞ ¼ sin 3ð2pt3Þ H€ardle (1991),
Bump : l2ðtÞ ¼ 1þ 2ðt�0:5Þ þ exp ð�200ðt�0:5Þ2Þ Breidt and Opsomer (2000),
Exponential : l3ðtÞ ¼ exp ð�8tÞ Breidt and Opsomer (2000),
Slow sine : l4ðtÞ ¼ 2þ sin ð2ptÞ Opsomer and Miller (2005). Note that all the four

functions are not linear. As a result, Lu (2014) method are not appropriate in most set-
tings since they assume an underlying linear funtion.
At the sampling design stage, we consider different sampling rates and poisson sam-

pling scheme. (1) Sampling rate: 10% and 20%; (2) Sampling plan: Poisson sampling
scheme (unequal probability design). The sample weights wi of poisson sampling
scheme have been chosen such that weights are proportional to the auxiliary variable
zi ¼ ðyi þ 2Þðti þ 2Þ and P

U 1=wi ¼ EðnSÞ ¼ N � r;
For each setting, we did L¼ 500 simulations. Each time, we generate a population

based on one of the four super models. Next, we use Poisson sampling to draw two
samples from frame A and frame B respectively. We evaluate the estimators by bias,
variance and MSE. Let l̂ðtÞ be an estimator of lðtÞ. Assume l̂ðiÞðtÞ represents the esti-
mator of lðtÞ from the ith sample, i ¼ 1; :::; L. The Monte Carlo mean EMC, the Monte
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Carlo bias BMC, Monte Carlo variance VMC, and the Monte Carlo MSE are given by the
following formulas

EMC l̂ tð Þ� � ¼ L�1
XL
i¼1

l̂ ið Þ tð Þ; (15)

BMC l̂ tð Þ� � ¼ EMC l̂ tð Þ� ��l tð Þ; (16)

VMC l̂ tð Þ� � ¼ L�1
XL
m¼1

l̂ ið Þ tð Þ�EMC l̂ tð Þ� �h i2
; (17)

and the main criterion for determining efficiency: Monte Carlo MSE is defined by

MSEMC l̂ tð Þ� � ¼ L�1
XL
i¼1

l̂ ið Þ tð Þ�l tð Þ
n o2

: (18)

For each point tj; j ¼ 1; :::; 200, we calculate Monte Carlo bias, variance and MSE
using formulas Eqs. (16), (17) and (18) respectively. The averages of 200 bias, variance
and MSE are reported.
In the following, we use LE to denote the linear estimator from Lu (2014) and use

LLE1 to LLE3 to denote the proposed local linear estimators by Method 1 to Method 3
respectively. Tables 1–3 give the simulation results of bias, variance and MSE from the
comparison between LE and LLE1, comparison between LLE1 and LLE2, and compari-
son between LLE1 and LLE3 respectively.
All the four super models H€ardle;Bump, Exponential and Slow sine that we used to

generate data are not linear. As a result, LE method that use regular linear regression
fitting will produce larger bias than the nonparametric fitting using LLE1-LLE3. This
systematic trend can be seem from Tables 1–3.
On the other hand, for the cases with large error variance r¼ 1 and small sampling

rate 10%, the trade off of small bias by using nonparametric methods LLE1-3 is that
they produce larger variances of the estimators than LE. For example, in the case of

Table 1. Comparison of Bias, Variance and MSE under Poisson Sampling Scheme between Linear
estimator (LE) and Local linear estimator by Method 1 (LLE1).

Function Sampling rate

Bias2 Variance MSE

LE LLE1 LE LLE1 LE LLE1

H€ardle r ¼ :4 10% 0.1855 0.0057 0.0063 0.136 0.1919 0.1417
20% 0.1866 0.0050 0.0031 0.0147 0.1898 0.0198

r¼ 1 10% 0.1969 0.0638 0.0410 0.2455 0.2379 0.3094
20% 0.1951 0.0274 0.0268 0.0679 0.2220 0.0953

Bump r ¼ :4 10% 0.0729 0.0028 0.0029 0.0693 0.0759 0.0722
20% 0.0732 0.0032 0.0012 0.0192 0.0744 0.0225

r¼ 1 10% 0.0764 0.0133 0.0219 0.2230 0.0984 0.2363
20% 0.0732 0.0150 0.0109 0.0605 0.0841 0.0756

Exponential r ¼ :4 10% 0.0198 0.0009 0.0018 0.0086 0.0217 0.0096
20% 0.0198 0.0010 0.0008 0.0036 0.0207 0.0046

r¼ 1 10% 0.0215 0.0120 0.0194 0.0741 0.0409 0.0861
20% 0.0298 0.0216 0.0164 0.0435 0.0463 0.0651

Slow sine r ¼ :4 10% 0.1962 0.0017 0.0043 0.0169 0.2006 0.0187
20% 0.1966 0.0015 0.0018 0.0048 0.1984 0.0064

r¼ 1 10% 0.1970 0.0077 0.0162 0.0729 0.2133 0.0807
20% 0.2030 0.0115 0.0091 0.0287 0.2122 0.0403
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Bump function with r¼ 1 and sampling rate of 10%, variance of LLE1 is 0.2230 com-
pared to variance of LE of 0.0219. This results a larger MSE of 0.2363 by LLE1 com-
pared with MSE of 0.0984 by LE. This phenomena can be seen from all the cases with
r¼ 1 and sampling rate of 10% except for the slow sine function. Slow sine function is
the one with the greatest variability among the four functions, which makes the bias of
LE dominating and variance of LLE1 more close to that of LE. Therefore, MSE of LLE1
is smaller than MSE of LE. With a larger sample size (sampling rate increase to 20%),
we observe that the variances by LLE1 is close to the variances of LE and MSE by LLE1
is smaller than MSE of LE. Local linear regression method, at this point, reflects its
advantage by fitting linear regression in local neighborhood instead of the whole data
set, which allows great flexibility in the possible form of the regression curve, when the
super model is not linear.

Table 2. Comparison of Bias, Variance and MSE under Poisson Sampling Scheme between local lin-
ear estimator by Method 1 (LLE1) and local linear estimator by Method 2 (LLE2).

Function Sampling rate

Bias2 Variance MSE

LLE1 LLE2 LLE1 LLE2 LLE1 LLE2

H€ardle r ¼ :4 10% 0.0047 0.0047 0.0742 0.0743 0.0790 0.0791
20% 0.0049 0.0049 0.013 0.0131 0.0180 0.0181

r¼ 1 10% 0.0465 0.0467 0.3254 0.3252 0.3720 0.3720
20% 0.0353 0.0360 0.0690 0.0689 0.1044 0.1050

Bump r ¼ :4 10% 0.0031 0.0031 0.0831 0.0831 0.0862 0.0863
20% 0.0016 0.0016 0.0118 0.0119 0.0134 0.0135

r¼ 1 10% 0.0155 0.0156 0.2170 0.2170 0.2326 0.2326
20% 0.0133 0.0137 0.0655 0.0654 0.0789 0.0792

Exponential r ¼ :4 10% 0.0010 0.0010 0.0088 0.0089 0.0098 0.0099
20% 0.0012 0.0012 0.0041 0.0041 0.0054 0.0054

r¼ 1 10% 0.0164 0.0171 0.1289 0.1288 0.1454 0.1460
20% 0.0102 0.0107 0.0363 0.0358 0.0465 0.0466

Slow sine r ¼ :4 10% 0.0015 0.0016 0.0154 0.0155 0.0170 0.0171
20% 0.0018 0.0018 0.0094 0.0094 0.0112 0.0113

r¼ 1 10% 0.0108 0.0111 0.0884 0.0887 0.0993 0.0998
20% 0.0153 0.0150 0.0329 0.0328 0.0482 0.0479

Table 3. Comparison of Bias, Variance and MSE under Poisson Sampling Scheme between local lin-
ear estimator by Method 1 (LLE1) and local linear estimator by Method 3 (LLE3).

Function Sampling rate

Bias2 Variance MSE

LLE1 LLE3 LLE1 LLE3 LLE1 LLE3

H€ardle r ¼ :4 10% 0.0070 0.0071 0.1283 0.1284 0.1353 0.1355
20% 0.0047 0.0048 0.0098 0.0101 0.0146 0.0149

r¼ 1 10% 0.0633 0.0643 0.1229 0.1230 0.1863 0.1873
20% 0.0563 0.0576 0.0932 0.0973 0.1496 0.1549

Bump r ¼ :4 10% 0.0021 0.0023 0.0619 0.0621 0.0641 0.0644
20% 0.0032 0.0033 0.0121 0.0128 0.0153 0.0161

r¼ 1 10% 0.0297 0.0299 0.1284 0.1292 0.1582 0.1591
20% 0.0176 0.0181 0.0507 0.0520 0.0683 0.0702

Exponential r ¼ :4 10% 0.0023 0.0023 0.0107 0.0110 0.0130 0.0134
20% 0.0027 0.0027 0.0044 0.0045 0.0072 0.0072

r¼ 1 10% 0.0080 0.0081 0.1502 0.1511 0.1583 0.1592
20% 0.0104 0.0105 0.0328 0.0334 0.0432 0.0439

Slow sine r ¼ :4 10% 0.0043 0.0045 0.0233 0.0233 0.0276 0.0278
20% 0.0022 0.0023 0.0057 0.0058 0.0079 0.0082

r¼ 1 10% 0.0107 0.0108 0.0796 0.0800 0.0904 0.0908
20% 0.0077 0.0078 0.0342 0.0349 0.0420 0.0428
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In general, nonparametric local linear estimators from the three methods perform
better than linear estimators since our super model functions are nonlinear. For
example, in Table 1, with H€ardle function, r ¼ 0:4 and sampling rate of 20%, MSE
from LL1 is only 0.0198 compared to 0.1898 from Lu’s method.
Table 2 reports the comparison between performance of LLE1 and LLE2 (with data

driven h selection procedure instead of PML estimator ĥP used by LLE1) under Poisson
sampling scheme for different settings. We notice the squared bias, variance and MSE
of the estimators are almost identical from LLE1 and LLE2. Same findings are found
from Table 3 when comparing LLE1 with LLE3 (full data driven bandwidth h selection
procedure). These finding show that using data driven selection procedure for h or for
h didn’t help improve the efficiency of the estimators compared to simply using hP and
ĥP derived by Eq. (9). This means that hP may be close to the true value and formula
Eq. (9) is efficient. We would suggest using LL1 (local linear estimator by method 1)
for regression estimation in dual frame surveys.

5. Conclusions

It is becoming more difficult, for a single sampling frame to include the entire popula-
tion of interest and to be inexpensive to sample. Dual frame surveys, therefore, are
becoming more popular. Such surveys require new methods for analyzing the regression
aspects of the data.
In this research, we propose three nonparametric regression estimators for use in a

dual frame survey. Simulation results show that all the three proposed methods work
well and perform similarly to each other. In general, all the three methods perform bet-
ter than the linear estimator proposed by Lu (2014) since the underlying functions are
non-linear. Method 1, using PML estimator hP and optimal bandwidth by formula Eq.
(9) suggested by Harms and Duchesne (2010) is therefore preferred and recommended
for use in a dual frame survey regression estimation, since it is simple to use and is per-
forming similarly as the other two methods.
Our research is done in the context of survey sampling, but they also apply to other

settings in which data could be combined from two independent sources and could be
extended to more than two surveys.
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